
1

A fresh look attoolchains in 2021
Bernhard "bero" Rosenkränzer

<bero@lindev.ch>
FOSDEM 2021 -- February 6, 2021



The current situation
There is a well known, well documented (but slightly
complicated) way to build crosscompilers -- some
alternatives (some even good) have sprung up, but
are not yet as widely known.



The traditional way
• Build binutils
• Build a minimal gcc crosscompiler (C only, no
threads, ...)

• Build glibc
• Build gcc again with all needed features (including
libstdc++ if you want C++ support)

https://www.gnu.org/software/binutils/
https://gcc.gnu.org/
https://www.gnu.org/software/libc/


Advantages
• By far the most widespread -- most 3rd party
libraries and applications have been tested in this
setup, and chances are people on IRC, mailing lists,
forums, ... have done this (and can likely help)



binutils
• binutils is a collection of tools that deal with object
files -- you might not have used them directly, your
compiler uses them.

• There are 3 major implementations, and you're likely
using all of them already:
– GNU binutils (the "standard" implementation)
– elfutils (shipped with almost all distributions to get libelf)
– LLVM binutils (part of LLVM, built everywhere for Mesa
etc.)



binutils
• elfutils provides good implementations of the tools it
provides, but is lacking a linker -- you still need a linker
from GNU binutils or LLVM.

• Tools in GNU binutils and LLVM binutils are pretty much
interchangable and use mostly the same parameters

• Big advantage of LLVM tools: Crosscompilers built in.
"llvm-objdump --disassemble" on an ARM binary
works just fine on an x86 box (or vice versa) while you
need per-architecture tools in GNU binutils



Alternative compilers: Clang
• There's another good compiler: clang (from LLVM).
LLVM can also replace binutils. In LLVM 10, the lld
linker (up until recently, the main blocker for
replacing binutils) has become good enough and
compatible enough to replace ld.bfd and ld.gold for
almost everything. And it's getting better with 11 and
12 (while gold is seeing little attention).

https://clang.llvm.org/
http://lld.llvm.org/


Alternative compilers: Clang
• Clang is a crosscompiler by design: You don't have
to build special per-target crosscompilers, clang can
target any supported platform.
Instead of having to build e.g. aarch64-linux-gnu-gcc, you can use clang -targetaarch64-linux-gnu -- for any architecture.

• It's easier to get into Clang's code than into gcc's
code.



Alternative compilers: Clang
• Many targets - including some GPUs - supported
• Performance of clang-built binaries is similar to gcc-
built binaries. There are special cases where clang
performs better, and others where gcc performs
better. On average, their performance is similar.

• Clang tries to be a drop-in replacement for gcc,
implementing many gcc extensions

• Initial release was in 2012 (gcc: 1987)



Alternative compilers: Clang
• Apache 2.0 licensed (with both the advantages and
drawbacks compared to gcc's GPL)

• There's a good chance you'll need LLVM anyway (it
is used, among other things, by Mesa) -- but on the
other hand, depending on some other decisions, you
may need GCC anyway even if you opt for clang
(libstdc++, libgcc_s)



Alternative compilers: Clang
• Fortunately, clang and gcc are binary compatible.
You can link a gcc-built binary to a clang-built library
and vice versa. In fact, you can evengcc -O2 -o test1.o -c test1.cclang -O2 -o test2.o -c test2.cgcc [or clang] -o test test1.o test2.o

• If you want to mix compilers that way, you have to use gcc's
support libraries (libgcc rather than compiler-rt) - clang can
use gcc's, but not vice versa (at least without -nostdlib
trickery)



Alternative compilers: TinyCC
• TinyCC is what its name implies - probably just
about the smallest possible implementation of a full
C99 compiler -- the compiler's source is smaller than
4 MB, and it takes mere seconds to compile.
It has interesting uses (e.g. embedding inside an
application), but doesn't optimize as strongly as
clang or gcc.
It is also limited to C (no C++). It might be interesting
for small embedded devices.

https://repo.or.cz/w/tinycc.git


Compilers: OpenArk (not yet ready)
• Announced by Huawei, but so far not usable:
The OpenArk compiler is supposed to become a C,
C++, Java, Kotlin and JavaScript compiler
generating native code.
So far, the released code can compile Java to
aarch64 assembly, but the largest component is a
binary blob for now. This is being fixed.

• May be interesting in the future, but not there yet.

https://www.openarkcompiler.cn/home
https://code.opensource.huaweicloud.com/HarmonyOS/OpenArkCompiler/home


Compilers: BSPs
• Many BSPs (Board Support Packages) that come with
development boards contain a compiler.
This compiler is usually a fork of an outdated version of gcc or
clang (both of which, in the mean time, have typically added
much better support for the hardware in question).
Unless you're working on a very special device (not yet
supported by the upstream compilers), it's usually good advice
to ignore the BSP and build your own clang or gcc.

• Sometimes that means adding a few kernel patches to support
newer toolchains - those patches are usually already written and
relatively easy to find (try the kernel git repository).

• Try to avoid anything not based on gcc >= 8 or clang >= 9.



Compilers: Conclusions
• gcc and clang are both good options. There is no clear
winner.

• Both have been used to compile full systems (including
the kernel). Most Linux distributions are built mostly with
gcc, some (OpenMandriva, Android) and the BSDs are
built mostly with clang. Some build-from-source
distributions offer both choices.
OpenHarmony will likely use a clang based toolchain in
the future (currently inherits gcc from Yocto).

http://openmandriva.org/


Compilers: Conclusions
• clang makes it easier (and, unless you're very
familiar with gcc's code base, faster) to add new
architectures and new languages, and is mostly built
as a library. If you're planning to add architectures
and new language, or to embed the compiler in your
own projects, give clang a try.

• If you're using glibc, you need gcc to build it (for
now). If you don't need any of the extras offered by
clang, you may want to go with gcc for everything.



libc: glibc
• For the system libc, glibc is the default option:

– most widespread
– most complete/most standards compliant
– very well tested
– most complete arch support (aarch64, arm, x86, x86_64, x32,
RISC-V 64, alpha, C-Sky, hppa, ia64, m68k, microblaze, mips,
powerpc, S/390, sh, SPARC)

• But:
– code not very readable
– compiles only with gcc (patches to make an older version compile
with clang exist in the google/grte/v6-2.29/master branch of glibc)

– not very optimized for small systems
– rather big (roughly 4 MB for ld.so, libc, libm, libpthread)

https://www.gnu.org/software/libc/


libc: musl
• Complete, fast and relatively small (785 kB)
• Designed for C11+ and POSIX 2008+, with many
glibc, Linux and BSD extensions

• Supports aarch64, arm, x86, x86_64, x32, RISC-V
64, m68k, microblaze, mips, mips64, mipsn32, or1k,
powerpc, powerpc64, s390x, sh

• Readable code
• Started 2011

http://musl.libc.org/


libc: uClibc-ng
• Complete, fast and relatively small (1 MB in full config)
• Can be stripped down easily
• Focused on embedded systems
• Supports many processor types, including MMU-less:
Aarch64, Alpha, ARC, ARM, AVR32, Blackfin, CRIS, C-Sky,
C6X, FR-V, H8/300, HPPA, i386, IA64, LM32,
M68K/Coldfire, Metag, Microblaze, MIPS, MIPS64, NDS32,
NIOS2, OpenRISC, PowerPC, RISCV64, Sparc, Sparc64,
SuperH, Tile, X86_64 and XTENSA

https://uclibc-ng.org/


libc: klibc
• Written for the early bootup process, used in the initramfs of
Debian and some derivates

• Subset of libc functions, optimized for size over
performance

• More direct use of kernel structures avoids some type
conversion (e.g. between different ideas of "struct stat")

• Extremely small (75 kB)
• But not powerful enough as a real world libc - might be an
option for some embedded systems

• Uses GPL kernel headers, resulting license situation not
100% clear.

https://mirrors.edge.kernel.org/pub/linux/libs/klibc


libc: LLVM libc (not yet complete)
• In its early stages, but some code is there.
• Potentially interesting in the future because:

– Designed to work with sanitizers and fuzz testing from the
start

– Targeting C17 and up - not carrying around ancient cruft
– Design goal: "Use source based implementations as far
possible rather than assembly. Will try to fix the compiler
rather than use assembly language workarounds."

– The LLVM project has a track record of delivering good
toolchain options

https://llvm.org/docs/Proposals/LLVMLibC.html
https://github.com/llvm/llvm-project/tree/master/libc


libc: bionic (Android)
• Originally based on the BSD libc, bionic is the libc used in
Android.

• Currently supports ARM (32 and 64) and x86 (32 and 64)
• Rather well optimized because of vendor support for
Android

• Used to be unusable for a regular Linux system - lacking
e.g. SysV SHM needed for X11 - but has largely caught up

• Unfortunately, at the same time added some Android-isms
that make it harder to use outside of a full Android system
(APEX, system properties etc.), build system tied to the
Android tree

https://android.googlesource.com/platform/bionic


libc: bionic (Android)
• Potentially makes it possible to use closed drivers
written for Android in a regular Linux system without
having to go through hacks like libhybris

• May be interesting to build Linux/Android hybrid
systems

https://android.googlesource.com/platform/bionic
https://github.com/libhybris/libhybris


Other potential libc options
• newlib is limited to static linking - if you don't need
dynamic linking, it may be for you.
Most Zephyr builds use newlib.

• dietlibc is optimized for small size and static linking -
but not very actively maintained, and on something
as low level as a libc, its GPL (not LGPL) license
may be a problem if your system will allow
building/installing/running custom code.

https://sourceware.org/newlib/
http://zephyrproject.org/
https://www.fefe.de/dietlibc/


libc: Conclusions
• There are many interesting options - for now:
• If you need maximum compatibility with other
systems, go with glibc.

• If you need a full fledged, but smaller and more
memory efficient libc, go with musl.

• If you need a subset of libc and want to strip out
unneeded components, try uClibc-ng.

• If you want to experiment with Android features on
regular Linux, try Bionic.



C++ support: libstdc++
• libstdc++ is part of gcc, used by almost all Linux
distributions including some that use clang as their
primary compiler (notable exception: Android)

• This is what almost everything is developed against
- the easiest option if you don't want to tweak code
to add missing #includes that happen to be
ignored by libstdc++.



C++ support: libc++
• libc++ is an optional part of LLVM/Clang.
• It's newer and smaller than libc++, carries less cruft to
support ancient code. Most benchmarks also show it
performing better.

• Problem: You can't mix libstdc++ and libc++ (for obvious
reasons, they export the same symbols). You can't e.g.
compile Qt against libc++ and expect a binary built with
Qt/libstdc++ (such as pretty much any non-free software out
there) to work.

• 3rd party applications (Chromium etc.) increasingly use
libc++



C++ support: uClibc++
• uClibc++ is (was?) an attempt to write an STL
implementation to go along with uClibc - a good idea
(certainly you can strip out some parts of the STL
when building an embedded system), but the last
commit was in 2016.

https://github.com/uClibcxx/uClibcxx


C++ support - conclusions
• If binary compatibility with other Linux distributions is
a big concern, go with libstdc++.

• If you're using clang and you care about
performance and memory efficiency, try libc++.



Debuggers
• gdb has been the debugger to go to for a long time -
initially released in 1986, and kept up to date (latest
release: December 2020

• More recently, lldb - a part of the LLVM project - has
come along. Initially released in 2003, it has become
a realistic replacement for gdb by now.

• Both tools do pretty much the same job, and both do
it well.

https://www.gnu.org/software/gdb/
http://lldb.llvm.org/


Debuggers: GDB and LLDB
• LLDB provides many command aliases for gdb compatibility.
• LLDB's native syntax tends to be cleaner (designed 20 years
later - less need to retrofit new features), but also more
verbose

• LLDB has the edge in C++ support, and evaluating
expressions in the LLVM JIT

• Good news for remote debugger users: gdbserver and lldb-
server speak the same protocol. You don't have to force users
to use a specific debugger when deciding what (if any) debug
server/stubs you put into a BSP/distro



Doing the right thing in a distribution
• Given there is no clear "best option for everything",
a distribution should try to support developers opting
for all options.

• Some things we have done and are planning to do
in OpenMandriva (and you can do in your favorite
distribution as well):



Keep crosscompilers up to date
• Many distributions decide to package
crosscompilers at some point - and then forget
about them when updating the native compiler (or
adding an important patch). It's easy to take care of
this -- OpenMandriva toolchain packages
automatically build crosscompilers for all supported
targets.
If you'd like to know how to do it, take a look at the
OpenMandriva gcc package (using rpm, but other
package managers can do something similar)

https://github.com/OpenMandrivaAssociation/gcc/blob/master/gcc.spec


Filesystem changes
• The traditional /usr/lib, /usr/lib64, /usr/lib32 split is no
longer sufficient. There's multiple ABIs, and there's
qemu-binfmt making it possible to run code for
different CPUs seamlessly -- opening the door to
e.g. running x86 Windows applications on ARM
Linux with qemu-binfmt and an x86 wine package...
If only there was a better place to put all the libraries
wine needs...



Filesystem changes
• Debian derivates (and possibly others) have recently
addressed this by creating /usr/lib/<triplet>, e.g.
/usr/lib/x86_64-linux-gnu, /usr/lib/aarch64-linux-gnu

• That's a step in the right direction, but we prefer going for
/usr/<triplet>/lib instead:
– Allows combining the real filesystem with a crosscompiler
sysroot

– Allows for /usr/<triplet>/include and /usr/<triplet>/bin
overrides where necessary (thankfully, only needed for a
few libraries)



Filesystem changes
• Remaining compatible with previous releases and other
distributions through symlinks is possible just as easily:cd /usrln -s x86_64-openmandriva-linux-gnu/lib lib64ln -s i686-openmandriva-linux-gnu/lib lib...



Filesystem changes
• As an extra bonus, this enables mixing libcs and STL
implementations as well - someone so inclined can keep
the main system on e.g. aarch64-openmandriva-linux-musl while providing aarch64-openmandriva-linux-gnu libraries to fulfill the needs
of relevant applications that can't be recompiled (non-free
games etc).



Questions? Feedback? Bags of cash? ;)
• If you have any of the above, ask in the FOSDEM
chat -- or email me at bero@lindev.ch or
bernhard.rosenkraenzer.ext@huawei.com

mailto:bero@lindev.ch
mailto:bernhard.rosenkraenzer.ext@huawei.com

