

An Emulator for my Old System Today and Tomorrow?

Thoughts and guidelines about digital preservation by/of emulators

PONSARD Christophe FOSDEM 21 - February 6-7 (online)

Context – NAM-IP Computer Museum

• Located in Namur/Belgium - 30' from Brussels (worth a visit next FOSDEM when we are back at ULB!)

www.nam-ip.be

- Missions:
 - Preservation: safeguarding digital heritage, focus on local pioneers
 - Acquisition of artefacts, enriching collections
 - Exhibition: for all, specific animation, permanent/temporary
 - Research: about machines, software, communities
- "Container design", an historical parallel

Preservation Constraints

- Machine in preservation mode
 - Difficult to be powered up e.g. inDATA DAI rare Belgian computer [1978] (= our use case)
 - How to keep machine expertise?
 - How to transfer programs?
 - How to show running software experience about that machine?
 - →benefit of using an emulator, e.g.

- Where to look for emulators (MAME/MESS, specific development, javascript ports...)?
- What are interesting usage scenarios?
- How to select one for some usage context?
- As emulators are themselves part of history: How to make sure/contribute to th sustainability of those nice piece of software on the long run?
- → Move from physical to digital preservation

Disclaimer / Focus

Not claiming to be expert, still discovering that area

Sharing some thoughts about:

- Past : digital legacy what do we want to preserve ?
- Present: what are the current strategies, what we can use?
- Future: how to make sure we keep that heritage for next generations?

Focus on emulators for retro-computing

Not looking at legal issues

Certainly partial /biaised view → feedback welcome

Outlook

- A step backward: digital preservation techniques
 - What is interesting for retro-computing?
- A wider look at emulators
 - A little analysis based on a timeline
- Use case and preservation tool chain
- Long term preservation strategies for emulators themselves
- Open Discussion

Digital Preservation

10100 1010

"maintain digital objects accessible and usable in an authentic manner for a long term into the future"

- Digital object: large scope
 - texts documents, emails, images, movies, music, spreadsheets
 - programs, games
 - entire web domains, social media...

- → often data dimension
- → more our focus
- → data link dimension

• Usable:

- Reading document, running code
 - Physical and logical threats: media not corrupted, format still supported
- As usable, more usable?
 e.g. better sound/screen resolution now, access time... (no tape loading please;-)

Authentic

- Same content for sure: semantic preservation
- Same experience as in the past? ("retro" dimension)

Some Digital Preservation Strategies

→ do they work for retro-computing?

Method	Idea	Example	Problem
Standardisation	Standard are there for a long time	Running on any IBM PC compatible	Few standard in retro time How long is "a long time"
Total preservation	Keep everything in state	Recap computer, change drive belt, refresh floppy disks	Costs/expertise for old HW, old media Restricted usage
Encapsulation	Container with useful meta- data, (links to) software	Format information to decode image Instructions how to run a program	Documentation, access Not solving anything
Extraction	Mining useful stuff	Text without images, decompilation	Partial, fallback in degraded mode
Migration/media	Transfer to more stable/accessible media	From tape/floppy to HD/SSD/Cloud (wav/binary files)	Lost media specificities (or use disk image) Lifespan of new media ?
Migration/backward compatibility (interoperability)	Can read/run previous version on current applications	Open doc/check/save Run win32 application on win64	Only document can be saved in new format Possible loss, progressive degradation Limited in time
Emulation	Keep digital resource in original (logical) form but emulate hardware	MAME for games MESS for old micro-computer DosBOX for DOS programs	Need to write/maintain emu. → see later How to access data → see migration How perfect is the emulation
(Universal) Virtual Machine	Ensure independence wrt host platform using simple to implement VM	Historical UVM concept Java ? → Javascript target	UVC targeting document not programs (see later in presentation)

Emulation – Background / Reminders

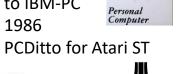
• **Definition**: HW or SW that enables one computer system (called the host) to behave like another computer system (called the guest).

Kind of "Digital Twin" of the computer system

- **Technical goal**: enables the host system to run <u>unchanged</u> software or use peripheral devices designed for the guest system ≠ virtualization : CPU is emulated (different instruction set)
- Usage scenarios/goals: have a look at a timeline to discover them!
 - "Past"
 - "Present"
 - "Future"

Emulator Timeline (main milestones)

1985


1965 **IBM 360** emulator for "old" 7070

1975 **ALTAIR BASIC** 8008 emulated **PDP-10**

Amiga SW Transformer to IBM-PC 1986

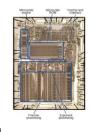
1995 Virtual Game Boy First OSS emulator

1996 **EMU** First arcade Videogame emulator 1998

2006 Mac Rosetta PPC→Intel (intel)

VirtualBox

2021 Mac Rosetta II Intel -> ARM



IBM

1962 **Emulation** Theory [IBM] **Larry Moss** "Father" of emulation

1982 80286 with 8086 real mode (FW emulator) Baby blue **CPMemulator**

1989 **FPU** emulators

ENTERTAINMENT SYSTEM

1990/91 First console emulators (e.g. NES)

1997 start of MAME

PSemu (early)

2002 **DOSBOX**

2012 emscripten project

emscripten

2015

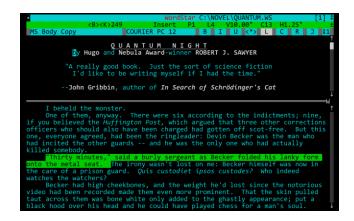
MAME

merged

MESS

2013-2014 Internet Archive using JMESS/DOSBox in web browser

Emulation - Background / Reminders


- **Definition**: HW or SW that enables one computer system (called the host) to behave like another computer system (called the guest).
- **Technical goal**: enables the host system to run software or use peripheral devices designed for the guest system
- Usage scenarios goals: see next timeline to discover them!
 - Past: digital preservation, retro-computing, retro-gaming e.g. MAME
 - Past present: backward compatibility against tech. change e.g. Apple migrations
 - Present: compatibility with market (de facto) standards e.g. PC emulators
 - Present: cost reduction (with performance trade-off)
 e.g. FPU emulator
 - Future: develop new system before HW is available e.g. ALTAIR BASIC!

Retro-computing Use Cases

- Retro-gaming
- Using specific software
 - E.g. non wysiwig text processor used by some writers like Wordstar by Robert J. Sawyer (SF writer) and R.R. Martin (Game of Thrones)
- Accessing old files
- For computer history
 - Study of past computer systems, recovery
 - Interactive experience look and feel/UI for public (Video is passive)

Emulator Selection Criteria?

Criteria	The bad	The good	Hints
Ease of installation configuration	Need to compile, find ROM, configure keyboard,	Platform bundles/pre-configured Running in browser [e.g. Internet Archive]	Multi-system more difficult Easy All-in-one distribution on RPI
Ease of use	Raw emulator, poor media management	Power utilities integrated (media mgt, snapshots, debugger) Nice front-end	Machine/constructor specific can bundle utilities Providing libretro API
Accuracy	Many component abstraction	Circuit/Cycle exact (but higher CPU)	Check forum, game compatibility
Long term support	Recent project, closed or small community, exotic technology	Long history, large community VM approach	Check repository activities OpenHub statistics

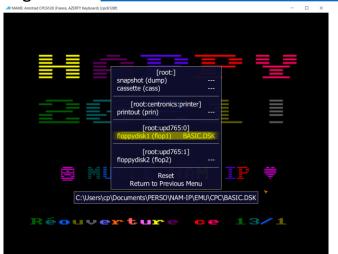
- → Can use multiple actually, using shared media
- → But not too many... encapsulation is poor, need to keep track of specific info...
- one multisystem [unified management]+ one more specific [if useful as complement]

Compare for Amstrad CPC – MAME vs JavaCPC

Generic emulator

Need to install ROMS, configure keyboards...

Accuracy?


Open Source Metrics (OpenHub) - In a Nutshell, MAME...

... has had <u>77,136 commits</u> made by <u>498 contributors</u> representing <u>10,529,234 lines of code</u>

... is mostly written in C++ \rightarrow compile approach with an average number of source code comments

... has <u>a well established</u>, <u>mature codebase</u> maintained by <u>a very large development team</u> with stable Y-O-Y commits

... took an estimated <u>3,239 years of effort</u> (COCOMO model) starting with its <u>first commit in December, 2007</u> ending with its <u>most recent commit about 1 month</u> ago

DSK exchange

More specific (based on JEMU but only limited targets)

Lot of features, everything preconfigured, copy/paste, printer...

Accuracy?

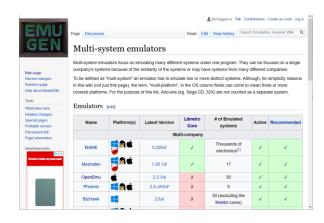
In a Nutshell, JavaCPC - Amstrad CPC emulator in JAVA...

... has had <u>30 commits</u> made by <u>3 contributors</u> representing <u>38,957 lines of code</u>

... is mostly written in Java with a low number of source code comments

... has a codebase with a very short history maintained by nobody with stable Y-O-Y commits

... took an estimated <u>10 years of effort</u> (COCOMO model) starting with its <u>first commit in December, 2008</u> ending with its <u>most recent commit over 11 years</u> ago

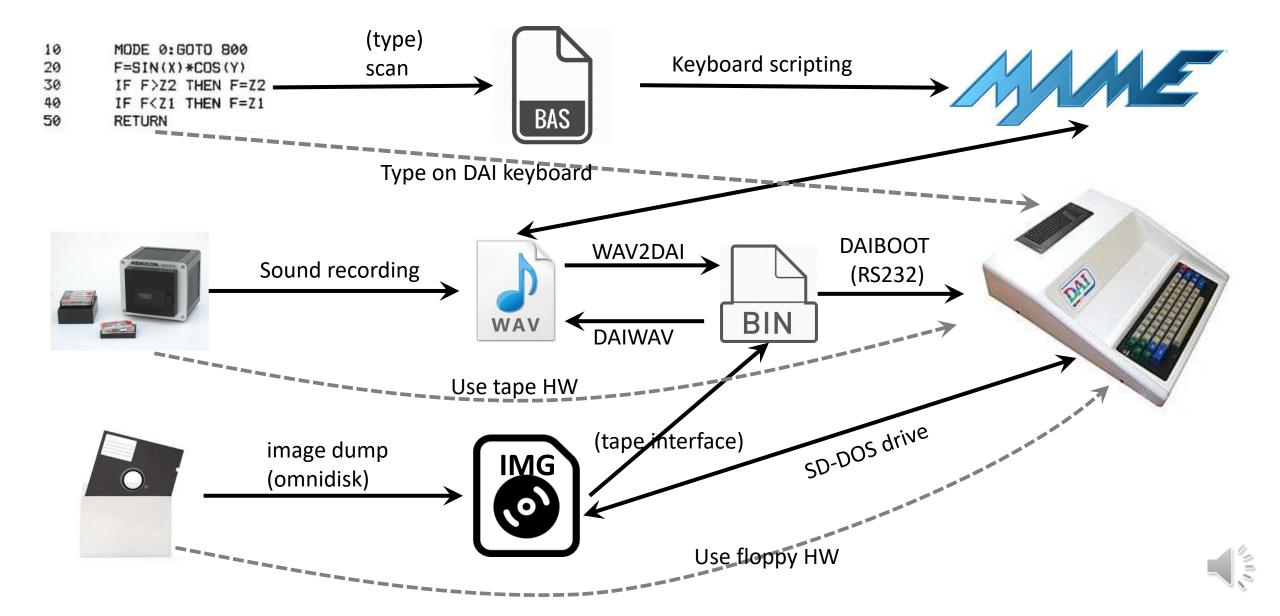


Where to Look for Emulators?

Some entry points...

- Multi-systems/platform/companies
 https://emulation.gametechwiki.com/index.php/Multi-system_emulators

 Inc. MAME, OpenEMU, BizHawk
- Specific emulators
 - Computers: https://en.wikipedia.org/wiki/List of computer system emulators
 - Consoles: https://emulation.gametechwiki.com/index.php/Main_Page https://www.planetemu.net https://www.planetemu.net https://www.planetemu.net https://www.emu-france.com http://www.emu-france.com http://www.emu-fran
- Retro-gaming zero install on raspberry pie
 - Retro-pie: https://retropie.org.uk
 - Recalbox: https://www.recalbox.com
- Web-browser
 - Internet Archive: https://archive.org/details/historicalsoftware (and others)
 - PCjs machines: https://www.pcjs.org (key applications, OS available)
 - TinyEmus: https://floooh.github.io/tiny8bit
- Fan pages...
 - http://bruno.vivien.pagesperso-orange.fr/DAI/programmes/index.htm

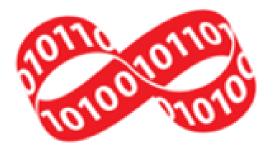


Building a Preservation Tool Chain – DAI Case

DEMO

PACMAN recovered DAInamic version

DAI Personal Computer 1978 Data Applications International Driver: dai.cpp


CPU; Intel 8080 2 MHz

Sound: 3×Speaker DAI Custom Sound Cassette

Video: 1056 × 302 (H) 50 Hz

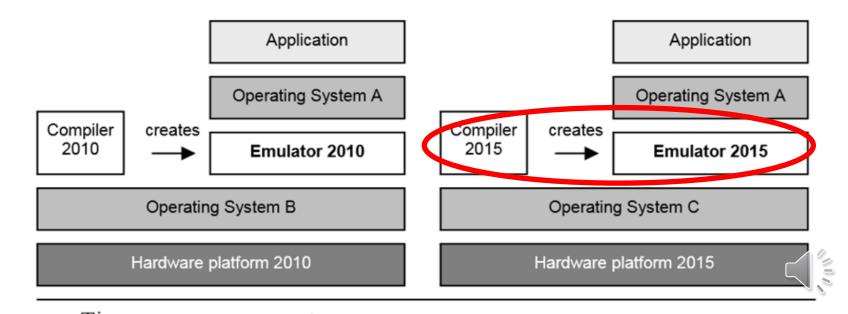
Long Term Preservation of Emulators

Emulators

- digital artefacts so also part of the problem
- depend on the guest system

Different approaches to manage this long term evolution

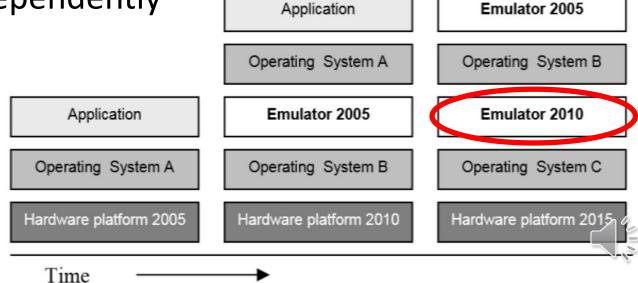
- Migration = recompiling to new guest
- Emulation chains = stacking on emulated guest
- (Universal) Virtual Machine = isolate from guest


Can be combined/mixed!

Migration Approach = recompiling emulators

IDEA: recompile to new target

- Need community for recompiling + possible adaptations
- Same process for evolution and improvement
- Preserving performance, reliability through testing
- Frameworks have more chance to evolve than specific emulator

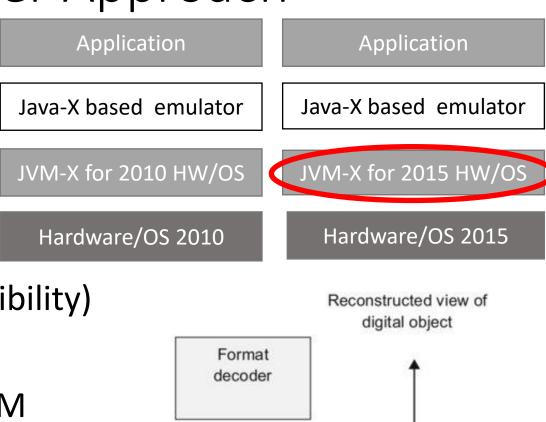

Emulator approach -> stacking emulators

IDEA: older system becomes emulated too

- Not same team working of different emulators (e.g. hidden win32 layer)
- Performance impact

 compensated by HW improvement
- Reliability impact → more likely to accumulate
- Can be hidden/multiplatform (e.g. QEMU)
- Old emulator maintained (?) independently

- Alternative: virtual machine
 - If same CPU
 - Better performance



Application

Operating System A

(Universal) Virtual Computer Approach

- IDEA: use VM technology to isolate from guest OS/HW
- Example: Java (JEMU, CPCEMU)
- Need to make sure new VM is developed/available for version "X" (bycode evolution → backward compatibility)
- More elaborated approach: Universal VM
- Simple VM easy to re-implement when necessary
- More designed for accessing document artefacts than for code. Not practical for emulators.

UVC

Object data

Viewer

LDS + type

description

Platform X

To Conclude

0100000000

- Emulators are great tools for many purposes
 - Great tool for museums at technical level
 - Easy/Zero install retro-computing/gaming help preserving collective memory
- Hope you enjoyed the quick journey in digital preservation and emulators
- May seem funny but not so easy to capture the full picture
 - Open Question: maybe need some knowledge base (where/how/who...)?
- Feedback / ideas / contributions welcome !

References

Papers:

- Stewart Granger, Emulation as a Digital Preservation Strategy, D-Lib Magazine, ISSN 1082-9873, Volume 6 Number 10, October 2000
- Lee, Kyong-Ho, et al. "The state of the art and practice in digital preservation." Journal of research of the National institute of standards and technology 107.1, 2002
- Jeffrey van der Hoeven, Bram Lohman, Remco Verdegem, Emulation for Digital Preservation in Practice: The Results, The International Journal of Digital Curation, Issue 2, Volume 2, 2007
- Mark Guttenbrunner and Andreas Rauber. A Measurement Framework for Evaluating Emulators for Digital Preservation. ACM Trans. Inf. Syst. 30, 2, Article 14, May 2012
- Dirk von Suchodoletz, Requirements towards Emulation as a Long term Preservation Strategy, http://eprints.rclis.org/14860/ 2009
- Andreas Rauber, An Introduction to Digital Preservation, IFS, Vienna, 2013
- David S.H. Rosenthal, Emulation & Virtualization as Preservation Strategies, a report commissioned by The Andrew W. Mellon Foundation, New York, October 2015
- Cochrane, Euan, Jonathan Tilbury, and Oleg Stobbe. "Adding emulation functionality to existing digital preservation infrastructure." Journal of Digital Media Management 6.3, 2018

Web:

- https://emulation.fandom.com/wiki/History of emulation
- https://kaluszka.com/vt/emulation/history.html
- https://www.zophar.net/articles/art 14-2.html
- https://blog.dshr.org/2016/07/talk-at-jisccni-workshop.html (blog of D. Rosenthal)